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A previous paper introduced the concept of nonreflecting boundary conditions for 
hyperbolic equations in more than one dimension. This paper develops a general boundary 
condition formalism for all types of boundary conditions to which hyperbolic systems are 
subject (including the nonreflecting conditions). The formalism is described in detail, and 
many examples are provided for common problems in hydrodynamics, including solid wall 
and nonreflecting boundaries. c 1990 Academic Press, Inc. 

1. INTRODUCTION 

This paper presents a unified formalism for the treatment of boundary conditions 
for systems of hyperbolic equations. This treatment is intended to encompass all 
possible boundary conditions for first-order hyperbolic systems in any number of 
dimensions. A general theory of boundary conditions is given first, which is then 
followed by a more detailed exposition for common problems in computational 
fluid dynamics. 

This paper differs from earlier work in that it attempts to unify all types of 
physically reasonable boundary conditions into a single formalism. The resulting 
formalism makes possible a “cookbook” approach to boundary conditions, in 
which new boundary “recipes” may be derived from the formalism, and old ones 
are simply looked up as needed. The latter portion of this paper (Section 3.2) begins 
a compendium of boundary conditions for problems in fluid dynamics. 

The central concept of this paper is that hyperbolic systems of equations 
represent the propagation of waves and that at any boundary some of the waves are 
propagating into the computational volume while others are propagating out of it. 
The outward propagating waves have their behavior defined entirely by the solu- 
tion at and within the boundary, and no boundary conditions can be specified for 
them. The inward propagating waves depend on the solution exterior to the model 
volume and therefore require boundary conditions to complete the specification of 
their behavior. This paper describes how to decompose hyperbolic equations into 
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wave modes of definite velocity and then how to specify boundary conditions for 
those modes which require them. 

The paper begins with theory and ends with practice. Section 2 looks at the 
problem of boundary conditions for general hyperbolic systems. Section 3 
represents several common boundary conditions for fluid dynamics problems. 
Finally, Section 4 describes the complete numerical solution of the fluid equations 
with boundary conditions. 

2. INITIAL BOUNDARY VALUE PROBLEMS FOR HYPERBOLIC SYSTEMS 

Let U(x, t) be a vector of m components Ui, each of which is a time varying field 
defined in a finite n dimensional volume V. The general behavior of U is described 
by a hyperbolic set of m first-order differential equations in the II spatial coordinates 
xk and time t. The time dependent solution for U is completely determined by 
(i) the governing differential equations; (ii) the initial values for U in Y; and 
(iii) the time dependent boundary conditions on the boundary of Y”. 

Some ambiguity exists as to what exactly constitutes a boundary condition. This 
paper presents the following conceptual model: a boundary condition consists 
of a single mathematical expression of information which (i) is external to the 
calculation, i.e., cannot be obtained solely from knowledge of U within Y’“; and 
(ii) contributes to, but does not by itself define, the values of XJ/dt along the 
boundary. In other words, the boundary conditions contain whatever information 
is needed to completely specify au/at, and which cannot be obtained from informa- 
tion within Y. 

It is important to separate the concept of boundary conditions from that of the 
boundary treatment. The boundary treatment is the complete algorithm for deter- 
mining the values of XJ/dt along the boundary of *Y-, and incorporates information 
from within -Y- as well as the boundary conditions. One must have a boundary 
treatment at all boundaries of the computational domain when obtaining a solution 
for U within Y. However, in the case of hyperbolic equations, the number of 
boundary conditions required at a given point on the boundary ranges from 0 to 
m and may vary with time and position as the solution evolves (e.g., an initially 
subsonic and outward-directed flow may become supersonic at some later time, 
reducing the number of boundary conditions from one to zero). 

Another important point is that at any time t the boundary conditions contribute 
only to the determination of XI/at at the boundary, and never define U itself. For 
example, a boundary treatment which explicitly sets the normal velocity of a fluid 
to zero at a wall boundary is not allowed in this model. Instead one would set the 
normal velocity to zero in the initial data and then specify boundary conditions 
which would force the time derivative of the normal velocity to be zero at all times. 
One advantage of this approach is that it decouples the boundary treatment from 
the time integration of the differential equations, so that the integration may be 
performed without reference to any special behavior at the boundaries. 
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2.1. Conservation Laws 

The analysis performed here follows that of references [ 1,2]. The starting point 
is a first-order hyperbolic system of m equations in m unknowns, in a space of n 
dimensions. The case where n = 3 is considered below. 

The unknowns we wish to solve for comprise a solution vector of m components. 
It is usually the case that the choice of unknown variables is not unique; for exam- 
ple, in fluid dynamics we might choose the conservative variables (denoted by 6) 
or the primitive variables (denoted by U), as in Section 3. While the definition of 
conservative variables is unique (e.g., momentum is conserved, while velocity is 
not), the primitive variables are selected for convenience, as many formulations are 
possible. 

The choice of conservative variables is often made to preserve exactly the 
conservation properties of the system in the interior of Y. However, the boundary 
condition analysis is greatly simplified when the primitive variables are used, so 
1 will begin with the conservative variables and describe the transformation which 
connects the two representations. The reader who is interested only in the primitive 
forms may skip the initial and final steps of this analysis, which describe the trans- 
formation from conservative variables to primitive variables and back. 

Let U be the vector of m conserved quantities tii, which obey the equation 

86 dF’ c3F2 dF3 
l+z+-+&-+b=o, 

. , ax, 3 
(1) 

where Fk is the vector of fluxes in the kth coordinate direction and fi is a vector 
of inhomogeneous terms which do not involve derivatives of any of the components 
of u.l 

Other equations may be required to close the system, such as algebraic relations 
between the variables (including equations of state), constraint equations (such as 
V. B = 0 in magnetohydrodynamics [S]), or other differential equations (such as 
V2@ = 47cGp for the gravitational potential in self gravitating systems). However, 
such auxiliary equations do not alter the boundary condition analysis, although 
they are required by the solution process as a whole. 

2.2. Characteristic Analysis 

The conservation laws of the previous section may be converted to an equivalent 
set of wave equations, which represent nonlinear waves propagating at charac- 

’ For example, D may contain source terms, such as heating, cooling, or gravitational forces; or it 
may contain inhomogeneous terms from the breakup of divergence terms, such as 

which is required by the form of Eq. (1) at the boundaries. 
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teristic velocities, which in turn are functions of the local solution and generally 
vary in space and time. These characteristic velocities are given as the solutions to 
an eigenvalue problem below. 

The equations of one-dimensional fluid dynamics may be put into a characteristic 
form in which the waves propagate in a single well-defined direction because only 
one direction is available. However, no unique direction of propagation exists in 
multidimensional problems [3,4], because the coeffkient matrices involved are not 
simultaneously diagonalizable. Fortunately, the boundary condition analysis only 
requires that any one coordinate direction be diagonalizable at a time, and this may 
always be done. 

Let the vector of primitive solution variables be U, and let the conservative 
vector U depend only on fields which are contained in U (for example, the 
definition of total energy density should not depend on the gravitational potential; 
this requirement simplifies the analysis, as shown below for the equations of fluid 
dynamics.) Then we may write [ 1 ] 

where P is a Jacobian matrix of elements 

(3) 

Similarly, we may write 

t!&k!?$ k = 1, 2, 3, 
k k 

(4) 

where the matrix Qk has elements 

Consider now the characteristic analysis for the x1 direction. (The other 
directions are similar). All terms not involving x, derivatives of Uj are carried along 
passively and do not contribute in any substantive fashion to the analysis; therefore 
we may lump them together and write 

(6) 

Transform Eq. (6) into primitive form by multiplying it by P- ’ and using (4), 
which gives 

f.XJ 
i'r+A1~+A2~+~'~+J-l I 2 3 

(7) 
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or 

au 
,.r+A1g+C=O, 

I 
C=A’~+A’E+D, 2 . 3 (8) 

where 

Ak 5 P-‘Qk, CsPp’C, D=P-‘f+i (9) 

The m left and right eigenvectors of A’ will be taken as fi and r,, and satisfy 

ITA’ = &I,‘, A’ri = E$ri, i = 1, . . . . m, (10) 

where the eigenvalues Ibi are given by 

det(A’-H)=O, (11) 

and where the left and right eigenvectors are mutually orthogonal: 

lIT .‘j=d;,. (12) 

The eigenvalues are real and are ordered so that I, < 2, d . . . d 2,. (A system of 
equations of the form of (7) is defined to be hyperbolic if the eigenvalues of the 
coefftcient matrices Ak are real.) 

A diagonalizing similarity transformation may be generated for A’ by forming 
the matrix S such that its columns are the right eigenvectors r,, and its inverse S ‘, 
whose rows are the left eigenvectors f:. The similarity transformation is then 

%‘A%= A, (13) 

where A is the diagonal matrix of eigenvalues : /ii, = 0 for i #j, Ati = 2, for i = j. 
Applying this transformation to Eq. (8) gives 

whose m components are 

(14) 

The boundary condition analysis is made more convenient if we define a vector 2 
of components g as 

L+i,r:~ 
, I (16) 
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Thus Eq. (14) may be written 

or, in component form, as 

Ifg+2q+rrc=o, i = 1, . . . . m. 

(17) 

The purpose of this analysis is to rewrite the original system of Eqs. (1) in a form 
which contains the quantities g, as it is these quantities which we will use to 
specify boundary conditions. Equations (17) and (18) are the starting point for the 
boundary treatment. 

2.3. Boundary Treatment 

As in the previous papers [l, 51, the problem of implementing boundary condi- 
tions is reduced to the problem of computing the appropriate values for the g 
terms introduced above. The techniques for determining the z terms are shown 
below, but first we will consider what to do with these terms once they are known. 

Given the values for L$, multiply Eq. (17) by S (i.e., solve for XJ/dt in Eq. (17) 
either analytically or with a suitable numerical method), giving 

If only the primitive time derivatives are required, then we simply put (8) for the 
definition of C back into (19) and we are done, as dU/& is now completely defined. 
If, on the other hand, we want the conservative derivatives, then we multiply 
Eq. (19) by P to obtain 

(20) 

at the x, boundaries. 
The only terms which contain spatial derivatives in a direction normal to the 

boundary occur in the 3 terms, where they are taken care of by the boundary 
conditions described below. The remaining terms in (20) involve derivatives in 
directions transverse to the boundary and may be evaluated just as in the interior 
of Iv. (The same is true for the corresponding terms in the primitive equation 
in (19)) 
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2.3.1. Practical Solution for au/at 

The boundary conditions described below define the values of 6p. However, in 
order to solve for lNJ/& in Eq. (19) we require the product d = SY, although we 
are given S I and 2. Thus we need to solve the system of equations 

S-‘d=eY (21) 

for d. Problems in fluid dynamics normally involve simple enough matrices that 
Eq. (21) can easily be solved by hand. More complicated problems, such as in 
magnetohydrodynamics (MHD), are too difficult for (21) to be solved analytically, 
and require numerical solutions. 

2.4. Boundary Conditions 

The purpose of boundary conditions is to supply whatever information is needed 
at the boundaries of the computational volume in order to complete the definition 
of the behavior of the system. The number of boundary conditions which may be 
imposed depends on the physics of the problem and may not be specified 
arbitrarily. This sometimes frustrating fact is a consequence of the wave nature of 
hyperbolic equations. Detailed discussions of this property are given in [2], [ 11, 
and [3]. This paper simply states the appropriate rules. 

Each eigenvalue %i obtained above represents the characteristic velocity at which 
a particular wave mode propagates (such as advection waves, sound waves, and 
Alfven waves). At a point on (say) the x, boundary, some number of the charac- 
teristic velocities describe outgoing waves, while some of them describe incoming 
waves. The behaviour of the outgoing waves is completely determined by data con- 
tained within and on the boundary of Y, while the behavior of the incoming waves 
is specified by data external to and on the boundary of V. The number of boundary 
conditions which must be specified at a point on the boundary is equal to the number 
of incoming waves at that point. We specify boundary conditions which determine 
the values of -Iz: for incoming waves, and compute from definition (16) the values 
of g for outgoing waves. 

Let the volume V be defined by ai < ?ci d hi. Then at all points with coordinates 
(a,, x2, x3), compute dci from definition (16) for all cases where I,,< 0 and specify 
from the boundary conditions the values of those Z for which %, > 0. Similarly, at 
all points with coordinates (b,, x2, x,), compute z from definition (16) for all 
cases where i, > 0, and specify from the boundary conditions the values of those 6”: 
for which i, < 0. Note that the determination of -4c: from (16) will require one-sided 
derivative approximations. 

If the problem under study is sufficiently complicated, the number of boundary 
conditions required at any point on the x, boundary may change with time, and 
the number required at any time may vary with position on the boundary. Thus a 
boundary treatment may have to respond to spatial and temporal changes in the 
solution and adjust the number and type of boundary conditions as appropriate. 
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Some problems, however, are sufticiently simple that one set of boundary condi- 
tions may be specified for all time. (The flow of a fluid next to a solid wall is such 
a case.) 

While the number of boundary conditions required is rigidly governed by the 
interior solution, the type of each condition is not. The researcher has considerable 
freedom to impose physically appropriate boundary conditions. The following 
sections provide several examples of useful boundary conditions for common 
problems in fluid dynamics. 

3. FLUID DYNAMICS 

The choice of conservative versus nonconservative forms of the fluid equations 
depends on the problem to be solved. I will not discuss the relative merits of the 
two approaches here, but will describe how to construct boundary conditions for 
either case. The definitions of the Y: are independent of the choice of approach; the 
choice of approach determines what to do with the L& once they are computed. 

3.1. Conservative Equations 

The fluid dynamics equations, in conservative form and rectangular coordinates, 
are 

~+~(Pu,)+~(Pu2)+~(Pu3)=0, (22) 
1 2 3 

~+~I(e+P)u,l+~[(rfp)u2l+~L(e+p)u3l-p 5 Ukgk=o, (23) 
1 2 .3 k=l 

~+~(m,~,)+~(m,~,)+~(m,~,)+~-~g,=O~ am, a (24) 
I 2 3 1 

t+~(m2u,)+~(m2u2)+~(m2ul)+~-pg2=O; am, a (25) 
I 2 3 2 

-;i;+r(m3u,)+~(m3u,)f~(m3u3)+~-pg3=0. am, a (26) 
I 2 3 3 

where 
3 

e=kp C u~+E, (27) 
k=l 

P-(7- lb, (28) 

mk=p”kj (29) 

a@ 
gkr -ax,' (30) 
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and where p is the mass density, p is the thermodynamic pressure, E is the thermal 
energy density, y is the (assumed constant) ratio of specific heats, rnk is the xk direc- 
tion momentum density, e is the total energy density (kinetic + thermal), @ is the 
gravitational potential field, and g, is the gravitational acceleration. For many 
problems @ and g, are specified functions of position, usually time independent. 
For problems involving self-gravitating fluids, @ is obtained by solving Poisson’s 
equation : 

V2cD = 471Gp, 

where G is the gravitational constant. 

(31) 

The inclusion of gravitational fields introduces some ambiguity in the definition 
of the total energy density, depending on whether one includes the gravitational 
potential energy term p@ in the definition of e in (27). The gravitational potential 
is omitted from the total energy for the following reasons: 

1. Adding p@ to (27) requires putting p &S/at on the right side of Eq. (23), 
which is difficult to evaluate for time varying gravitational fields. 

2. The inclusion of a spatially varying field (CD) in the definition of the conser- 
vative variable vector ij (in the e component), when that field does not appear as 
a component of the primitive vector U, invalidates Eqs. (2) and (4). We would have 
to replace these equations by 

aU au aZra@ 
nt=px+z57t’ 

and 

aFk 
-Q” 

au aFk a@ 
zg- &+zcix,’ 

k = 1, 2, 3. 

(32) 

(33) 

While this substitution can be made, it seems more trouble than it is worth and will 
not be done here. 

The fluid equations given here are in the conservative form of (1 ), with 

F3 E 

PU3 

(e + P) ~3 

m3u1 

m3u2 

m3u3 + p 

PUI 

(e+p)ul 

‘i 

PU2 

(e + PI ~2 

mlul+p , F2S 

i ( 

m2ul 
mlu2 m2u2+p 

mlu3 m2u3 

’ i 
0 

-PC:=, Ukgk -PC:=, Ukgk 

OE -Pgl -Pgl 

-Pi?2 -Pi?2 

- Pg3 - Pg3 
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Define the primitive vector U as 

Then the Jacobian matrix P = &?/XJ of (3) is 

i 

1 0 0 0 0 
fc:=, u: ll(Y - 1) PUI P42 P43 

P= 

UI 0 p 0 0 

u2 0 0 P 0 

u3 0 0 0 P 1 

The primitive equations are then found to be 

(35) 

(36) 

ap ap ap ap 
37+%3y+U’~+“‘~+p 

1 2 3 

ap ap ap ap 
at+% ~+Uz~+“‘-gy+YP 

1 2 3 

au, 
li+u,2+u2gl+ 

au, 1 ap 

1 2 
243 z + - - - g, = 0, 

3 P axI 

au2 
~+u,~+u2~+u3~+~~-g2=o, 

I ’ 2 3 pax2 

au3 
x+u,g+u22+ 

au3 1 ap 
u,dXj+---g3=0. 

1 2 pax3 

(37) 

(38) 

(39) 

(40) 

(41) 

Now we may set up the boundary condition analysis for the x1 direction. Write 
Eqs. (37)-(41) as 

as in (8), where A’ is 

i 

UI 0 P 0 0 

0 Ul YP 0 0 

A’= 0 l/p 

u, 

0 0 

, 
0 0 0 u*o 
0 0 0 0 u, i 

(42) 

(43) 
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and the C vector contains all remaining terms which do not involve elements of 
au/ax 1 

The eigenvalues of A ’ are 

E,, = u, -c, A2 = /I, = 2, = 24, ) &=u, +c, 

where c is the speed of sound: 

YP c==-. 
P 

The left eigenvectors may be written 

q= (0, 1, --PC, O,O), 

1; = (2, - 1, 0, 0, 01, 

1: = (0, 0, 0, 1, 01, 

1: = (0, to, 0, 11, 

1; = (0, 1, pc, 0,O). 

(44) 

(45) 

(46) 

Eigenvalues 2, and I,, are the velocities of sound waves moving in the negative and 
positive x1 directions; A2 is the velocity for entropy advection; while lb3 and & are 
the velocities at which u2 and u3 are advected in the x, direction. 

Next form the quantities L$ from Eq. (16), and get 

(47) 

These definitions may be inverted to give 
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ap 1 Y2 1 .L$ &Yr 
-=-T - - 
ax, c u,+z u,+c+u,-c [ ( 11 ’ 

ap _ 1 -4”5 z ax, -( 2 u,+c+u,-c ’ > 

(48) 

Multiplying Eq. (42) by the left eigenvectors gives Eqs. (17) and (18). The 
similarity transformation matrix S-l has as its rows the left eigenvectors l,? given 
in (46), while the vector 3 has its components given in Eq. (47). The produce SY 
which is required in Eq. (19) has the components 

This result may be obtained by setting up and solving Eq. (21), or by substituting 
Eqs. (48) for W/ax, in terms of 64 into the terms A’ XJ/ax, of Eq. (42). Either 
way we end up with the primitive equations in the form 

ap 1 z+c’ s+;(g+g) +u2g+u3-+p [ I (50) 
2 

iI3 (Z+Z)=o, 

ap 1 ap ap 
~+IjM+%)+%~+%aX+.lP 

2 3 (Z+Z)=o, (51) 

au u1+1(~-~)+U2~+u3~-~,=o, 
at 2pc (52) 

2 3 

au2 1 ap ~+Y3+u2~+u3~+---p2=o. 
P ax2 (53) 

2 3 

au3 ~+94+u2~+u3~+=-g3=o. 
2 3 P ax3 

(54) 
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If only the primitive equations are desired, we can stop at this point. Otherwise 
multiply the vector of Eqs. (50)-(54) by P to get (20) as 

ap 
;1+4 +~(P"')+~(P%~=o~ (55) 

2 3 
ae 1 z+2 ( 3 C d 

k=l 

> 4+ 4 
- 
Y-1 

+ PU, 4 + pu2 4 + PU, 4 

+$ C(f+P)u21+$ [(e+p)u31-p i ukgk=oy 

2 3 k=l 

~+u,d,+pd,+~(m,u,)+~(m,u,)-pg,=O, 
2 3 

~+u2d,+pd,+~(m,u,)+~(mlu,)+~-W,=O, 
2 3 2 

~+u,d,+pd,+~(m,u,)+~(m,u,)+~i--Pfi,=O, 
2 3 3 

(56) 

(57) 

(58) 

(59) 

where the di are defined in Eq. (49). 
The fluid equations are written and evaluated in the above form at the x, 

boundaries. The calculation of the g quantities depends on the boundary 
conditions and is described below. 

3.2. Boundary Conditions 

Now we consider boundary conditions for only the x1 direction, as the other 
directions are handled similarly. Let the solution domain in the x1 direction be 
a, <x, 6 b,. For all points in a, <x, < 6, (the interior), solve Eqs. (22)-(26) or 
(37)-(41) as written. For all points on x, =a, or x, = b, (the boundaries), solve 
Eqs. (55)-(59) or (SO)-(54). The inhomogeneous and transverse derivative terms in 
the boundary equations are evaluated by the same approximation methods as in 
the interior. 

The quantities z. are determined as follows: when the characteristic velocity Ai 
points out of the solution volume, compute the corresponding dz: from its definition 
in (47), using one-sided derivative approximations; when 1, points into the solution 
volume, specify the value of g from the boundary conditions. Several useful 
boundary conditions are derived below. 

3.2.1. Slip Wall Boundary Conditions 

At a slip wall (frictionless wall), the normal velocity component is zero at all 
times, while the transverse velocities may be nonzero. Thus the initial data must 
have u,I~,=~,=u,I~,=,,,=O. 

581/89/Z-14 
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At xi =6i, II, = -c, L2=A3=&=0, and A,=c. Hence LZs must be computed 
from its definition in (47). Characteristic velocities 2 through 4 are zero, so the 
choices for L??* through Yd are ambiguous; however, setting L& = L$ = J& = 0 is 
consistent with the definitions in (47) and makes sense on physical grounds. Setting 
J& = 0 means that the only entropy changes at b, are due to transverse advection, 
while setting YX = L$~ = 0 similarly means that the only changes to u2 and ug at b, 
are due to the transverse terms in (53) and (54) which is reasonable at a frictionless 
wall. 

Y1 definitely represents an incoming wave, so we must specify its value. We do 
so by requiring that ur( x, + = 0 for all time. Inspecting Eq. (52) we see that ui will 
remain zero if we set 9, = L&Z5 - 2pcg,. The slip wall conditions are 

x1 = a, (24, = 0) x, =b, (2.41 =O) 

(60) 

3.2.2. No-Slip Wall Boundary Conditions 

At a no-slip wall, not only is the normal velocity component zero, but friction 
causes the transverse velocity components to be zero as well. The initial data must 
have all velocity components zero at the wall, and the boundary conditions are 
chosen to keep the velocity zero at all times. 

We still have SC;, Y2, and L& as given in the previous section, but now choose 
J& and dz), to force u2 = u3 = 0 at the wall. From Eqs. (53) and (54) we see that the 
necessary conditions are L& = g, - (l/p) ap/ax, and L$ = g, - ( l/p) ap/&c,, where 
ap/ax, and ap/ax, must be computed using the interior derivative approximation 
methods, because they are in the transverse directions. The complete list of boundary 
conditions is 

x,=a, (u,=u,=u3=0) x,=b, (u,=u,=u,=O) 

-rq=g2-lAk 
P ax2 

Y+--$ 

25 = 3, + 2pcg, 

A+g2-;$ 
T4=g,--1c?p 

P ax, 

(61) 
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3.2.3. Free Boundary Conditions 

The boundaries of a computational domain often do not coincide with walls, but 
are simply the edges of some finite region, across which the fluid is free to flow. 
I will call these free boundaries. The flow direction and velocity at a free boundary 
will exhibit a wide range of behavior, depending on the local solution. The number 
and type of boundary conditions required may vary from time to time or place to 
place along the boundaries, even for one particular problem. Because the 
appropriate boundary conditions are so problem dependent, it is not possible to 
provide an exhaustive list, but a few useful examples and their derivations are given 
below. Deriving boundary conditions is often simpler than determining which 
conditions one ought to impose, and experimentation is usually necessary. 

3.2.4. Supersonic Inflow 

Supersonic inflow at x1 = b, is characterized by a1 < -c, so that all Ai < 0. 
Consequently we must specify all values of L$ from boundary conditions. 

Supersonic inflow is most often implemented as a steady state or near steady 
state boundary condition, the latter case being one in which only the transverse 
derivative terms may introduce a time dependence at the inflow boundary. If we 
allow the transverse terms to have such an effect, then the near steady state 
conditions are 

x, = a, (24, > c) x1 = 6, (u, < -c) 

% = -Px, 
22 = 0 

x3= g2 

=%=s3 

=% = P%l 

z = -PGT1 

92 = 0 

-%=g, 

%= g3 

dc; = PQl 

(62) 

The initial data must also specify supersonic inflow at the boundaries, in order 
to be consistent with the boundary conditions. 

3.2.5. Supersonic Outflow 

Supersonic outflow at x, = b, is characterized by u1 > c, so that all Ai > 0. Conse- 
quently we can specify no boundary conditions at all, and the evolution of the flow 
at the boundary is determined completely by interior data. In this case we simply 
compute all & values from their definitions in (47), using one sided approximations 
to the derivatives. 

Supersonic outflow at x1 = a, has uI < -c, so that all ii < 0, and all g values are 
computed from their definitions in (47). 
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3.25. Subsonic Outflow 

Subsonic outflow at xi = 6, is characterized by 0 < u1 < c, for which A1 < 0 and 
AZ-5 > 0. Thus we compute ZZ- 5 from their definitions in (47) and specify 9’i 
according to some boundary condition. While there is no unique choice for Zi, the 
following possibilities are often useful. 

3.2.6.1. Nonreflecting boundary condition. This condition was described in some 
detail in [l] and was first introduced correctly (for nonlinear equations) by 
Hedstrom [6]. The nonreflecting boundary condition demands that the amplitude 
of an incoming wave be constant in time. This condition is equivalent to stating 
that there is no incoming wave, as it is the variation in amplitude which constitutes 
wave motion. 

If we drop the transverse terms, then the first component of (18) is the charac- 
teristic equation 

($-Pcg+%+Pcg,=o, (63) 

where the expression in parentheses represents the time derivative of the amplitude 
of the characteristic wave (see, for example, Whitham [3], or Landau and 
Lifshitz [7], for a discussion of characteristic waves and Riemann invariants). The 
wave amplitude remains constant if we set 9r = -peg,. 

Thus the nonreflecting boundary condition for subsonic outflow is 

xl=a, (-c<u,<O) x,=b,(O<u,<c) 

=% = PQYl % = -peg, 
(64) 

with all other 9 i values being computed from (47). 
Nonreflecting boundary conditions are well suited for problems in which a 

rarefaction wave propagates out of the boundary and into a previously undisturbed 
medium, or in general for problems in which nothing useful is known about the 
external solution and the suppression of incoming waves seems like a reasonable 
choice of boundary condition. 

3.2.6.2. Force-free boundary condition. For some problems the nonreflecting 
boundary condition is inappropriate. The “correct” solution implicitly contains an 
incoming wave which must not be suppressed. This situation most often arises when 
the real solution exterior to the model volume is changing in time and must 
communicate its behavior to the interior through the boundaries. 

In the absence of more knowledge about the exterior solution, one approach to 
this case is to apply a boundary condition which sets to zero the sum of all forces 
acting on the fluid in the direction normal to the boundary. This choice effectively 
eliminates all normal terms except the advective term uI &,/ax,, so that a fluid 
element at the boundary is simply advected outward at the fluid velocity. 
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From Eq. (39) we see that imposing a zero net force in the x1 direction requires 
that 

which gives the boundary conditions 

x1=a, (-c<u,<O) x1 = 6, (0 < u1-c c) 

(65) 

(65) 

A good example of when the force-free condition is useful is the case when a 
pressure equilibrium (or other zero net force) exists at the boundary. A pressure 
equilibrium is maintained by the propagation of sound waves, which serve to 
equalize the pressure across the boundary; therefore the exterior solution must 
communicate this equilibrium to the interior. In this case fluid elements follow 
“ballistic” trajectories. The homologous expansion of a uniform gas [ 1 ] is such a 
problem, for which the nonreflecting boundary conditions destroy the pressure 
balance. 

3.2.6.3. Constant pressure boundary condition. There are some problems for 
which a particular constraint must be satisfied. This section describes the case 
where the pressure is known to be constant at the boundary. Other such conditions 
may be handled in a similar fashion (as was the case of zero normal velocity 
previously). 

It is usually the case the one wants ap/at = 0 in the absence of transverse effects, 
but not otherwise. This condition is satisfied if & + 5?‘r = 0, giving 

x,=al (-c<u,<O) x,=b, (O<u,<c) 

q= -9, g = -g 
(67) 

3.2.7. Subsonic Znjlow 

Subsonic inflow at x1 = b, is characterized by -CC ui ~0, so that A,-,<0 and 
A, > 0. Thus we compute Y5 from its definition in (47) and must specify the other 
3 from boundary conditions. The value of .Yi may be determined by any of the 
methods in the previous sections, or any other similar condition. This section will 
focus on the determination of LZ*, -rt;, and YZ. 

3.2.7.1. Nonrejlecting boundary conditions. For most problems of subsonic 
inflow, nonreflecting boundary conditions work well enough in the specification of 
9 2-4. T2 describes the inflow entropy, so setting SC; =0 states that the inflow 
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entropy is constant in the x, direction. Setting L& = g, and gb = g, will hold the 
u2 and u3 velocities constant in the absence of tangential effects. 

x1=a, (O<u,<c) x1=b, (-c<u,<O) 

Yi from Section 3.2.6 
(68) 

dc; from Section 3.2.6 -4c; = A5 

Note that any of these conditions may be used in conjunction with any of the 
conditions from the previous sections. 

3.2.7.2 Constant mass jlux. Some problems assume mass flux pu, at the inflow 
boundary. If the correct mass flux is specified initially, then it will be maintained at 
later times if 

-$m,)=p~+u, $0, 

From (50) and (52), ignoring tangential effects, we get 

2u,Lz2 + (2.4, - c) 2, + (241+ c) 25 = 2pc2g,, (69) 

which gives 

x,=a, (O<u,<c) x,=b,(-c<u,<O) 

6/; = ~C~PC2~,-2U,~-~U,-C~Y,1 Yl =- 1 [2pc*g,-2u,~-(u,+c)~] 
1 u1 -c 

(70) 

assuming that T2 has been specified. If Y: is not known, then we might specify L?, 
(or Y,,) from one of the methods of Section 3.2.6 and solve for P2 from (69) as 

x,=a,(O<u,<c) x,=b,(-c<u,<O) 

Iri=~c2Pc~g~-(u~-c)~-(u~+c)~l 
1 

spz = $ [2pc2g, - (Id1 -c) q - (u, + c) qtp53 
1 

(71) 
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Note that (70) could be used as an outflow boundary condition in principle, 
since it involves 9, and Y5. In practice, however, one normally wishes to fix the 
mass flux at an inflow boundary, not an outflow boundary. 

4. NUMERICAL IMPLEMENTATION 

Space limitations preclude a comprehensive set of computational examples for all 
the boundary conditions described in this paper. However, I will present a general 
numerical solution for a system of fluid dynamics equations, including the 
implementation of the boundary formalism. The reader is referred to the previous 
paper [l] for sample problems. 

The complete implementation breaks down into two parts: the calculation of 
time derivatives based on the current solution and the integration of time 
derivatives to obtain a future solution. 

4.1. Computing the Time Derivatives 

Let the computational volume -Y- be defined by a,< x, 6 b,, 1= 1,2,3. For 
simplicity, discretize the solution on a uniform grid with grid spacings 
Ax1 = (b, - a,)/N,, so that x,, = a, + i Ax,, i = 0, 1, . . . . NI, with X~ = a, and x,~, = b,. 
Thus the interior points in the Zth direction are denoted by 0 < i < N,, while the 
boundary points have i = 0 or i = N,. Any function f = j-(x1, x2, x3) is represented 
in discrete form as fVk ~f(x,~, xy, x~~). 

The calculation of time derivatives in the interior consists simply of approxi- 
mating the spatial derivatives in Eqs. (22)-(26) or (37t(41) with some suitable 
numerical scheme, and evaluating the inhomogeneous terms, at the interior points. 
Of the many approximation methods available, finite difference methods are the 
simplest and will be used here. The accuracy of a finite difference method is 
described by its order of convergence, i.e., by the power of Ax at which its error 
vanishes in the limit as Ax -+ 0. The higher the order, the more accurate the 
approximation. 

A globally second-order accurate scheme may be achieved by using the 
approximations 

- =l-(fi+ljk-L-ljklr 
af i= 1 ax, ijk 2 Ax1 

, . . . . N, - 1 ; (72) 

(73) 

(74) 

and similarly for the x2 and x3 directions. 
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A globally fourth-order accurate scheme may be achieved by using the 
approximations 

- zL [8(~+1jk-fi~Ijk)-(fr+2ik-fr--jk)l, 
af 
ax I i,k 12 Ax, 

i = 2, . . . . N, - 2; 

fi =& C18(fi,k-fOlk)-9(f2jk-fOjk)+2(f~j~-fOjk)l; 
1 OJk I 

- =L [2(fijk-f~jk)+6(f2jk-f?ik)-(f?ik-f?ik)1; 
af 

axl Ijk 6 Axl 

af 
=L [2(fN~jk-fN~-~jk)+6(fN~-~~k-fN~-~jk) ax, N,-ljk 6Ax, 

-(fN,-I]k-fN,-3jk)l; 

af 
=L [18(fNljk-fNI~Ijk)-9(.fN,,k-fN,-2jk) 

dx, N,Jk 6 Ax, 

+2(fh’ljk-fNI-3jk)l; 

and similarly for the xz and x3 directions. 

(75) 

(76) 

(77) 

(78) 

(79) 

The global order of convergence may be one greater than the order of con- 
vergence of the approximations used at and near the boundary. Thus Eqs. (72)-(74) 
will yield a globally second-order scheme, even though Eqs. (73)-(74) are first-order 
accurate; similarly, Eqs. (75t( 79) will yield a globally fourth-order scheme, even 
though Eqs. (76)-(79) are third-order accurate. In each case the order of the scheme 
away from the boundaries is one higher than the order at and near the boundaries, 
and the global order is the same as that of the scheme away from the boundaries. 
It is sometimes the case that using boundary approximations which are the same 
order as the interior scheme (second or fourth here) will lead to an unstable 
solution, which is why the boundary approximations are of lower order than the 
interior approximations in the above formulas. 

At the x1 boundaries (i = 0 or i = N,) the fluid equations are put in the form of 
(50)-(54) or (55)-(59). The transverse derivatives and inhomogeneous terms are 
evaluated with the same approximation methods used for the interior, as these 
quantities do not require information external to the model volume for their 
evaluation. 

The normal (x,) derivatives are subsumed into the definitions of the -4L: 
quantities. Those L$ for which the corresponding characteristic velocities Ai are 
directed out of the model volume are evaluated from their definitions in (47), using 
one-sided approximations (73), (74), (76), or (79) for the spatial derivatives. 
The remaining z values are determined from the boundary condition formulas of 
Section 3.2. 
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Complications arise at corner points, where two or three coordinate directions 
require boundary conditions simultaneously. In this case (supposing that all three 
directions are involved) we perform the characteristic analysis for each coordinate 
direction, and obtain quantities ~2’~ and 4 for the x2 and x3 directions which are 
analogous to L$ for the x1 direction. The x2 and x3 derivatives are then replaced by 
the appropriate linear combinations of ~2’~ and J+$ quantities. The values of ~2; and 
J$$ are then determined by one-sided derivatives or boundary conditions, depending 
on the values of the corresponding characteristic velocities pi and vi in the x2 and 
x3 directions. (Note that p1=u2-c, ~2=~3=~4=u2, p5=u2+c; v1=u3-cc, 
v2=vj=vq=u3, v,=u,+c.) 

4.2. Integrating the Time Derivatives 

The solution is discretized in time as well as space. Given the solution at the 
current time step n, where t = t”, we wish to compute the solution at time step 
n+l, where t n+’ = t” + At. The time step size At must normally be less than a 
certain upper limit, which is described below, and usually varies during the course 
of the calculation. 

Having computed the time derivatives da,/dt (say) at all grid points, we are 
free to integrate the time derivatives from time t” to time tnf ’ with any suitable 
ordinary differential equation solver. The constraints on the integrator to be used 
are that it must be stable for reasonable time steps and must be sufficiently accurate 
for the purpose at hand. The accuracy of a time integration method is also 
described by its order of convergence, i.e., by the power of At at which its error 
vanishes in the limit as At+ 0. The higher the order, the more accurate the 
integration. 

For time dependent calculations the accuracy of the numerical solution to a 
system such as the fluid dynamics equations is described by the global convergence 
rate. If we let Axl+ 0 and At + 0 while keeping Ax,/At constant (i.e., at a fixed 
Courant number), then Ax, cc At and the norm of the error in the solution at any 
fixed time also goes to zero as some power of At, that power being the global order 
of convergence. If the spatial derivative approximations and the time integration 
have different orders of convergence, then the global order of convergence is the 
lesser of the two. Thus it is desirable to match the orders of convergence of the 
spatial derivative and time integration schemes for optimum accuracy and 
efficiency. Otherwise some effort is wasted in the calculation of some quantities to 
excessively high accuracy. 

An exception to the matching rule occurs when the purpose of the calculation is 
to achieve a steady state solution, for which the preceding time dependent solution 
is of no interest. In this case one should choose a simple (and consequently fast) 
low order time integration scheme to minimize the calculation time required. Once 
a steady state has been achieved, the time derivatives are zero and the order of the 
time integration is irrelevant, and the global order of convergence is simply the 
order of the spatial derivative approximation. 
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One of the simplest and most efficient fourth order time integrators is the classic 
fourth-order Runge-Kutta method, which may be written 

nj:,r=pk+‘nt- duvk ” 
2 dt ’ 

(or similarly for U, if a nonconservative (primitive) form has been chosen for the 
fluid equations). This scheme should be used along with the fourth-order spatial 
derivative approximations to achieve a globally fourth-order convergent calcula- 
tion. (For a suitable second-order integrator, see Cl].) Note that d~ok/dtl@” refers 
to the time derivative of U at the grid points (xii, xzj, x~~) as computed from the 
intermediate step solution a(-). 

The time step At is given by 

l’liikl + ctjk + b,ijkl + cijk + b+kl + cijk 

Ax, Ax2 
(81) 

where (T (the “Courant number”) may be given any value <2.0612..., which is the 
maximum stable limit [2]. Values of (T = 0.5 or CJ = 1 are conservative and normally 
work well. 

5. CONCLUSION 

This paper has presented a unified framework for specifying boundary conditions 
for systems of hyperbolic equations. The framework is flexible enough to encompass 
virtually any type of boundary condition. Many useful conditions have been 
derived for common problems in computational fluid dynamics. 
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